Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Emerg Microbes Infect ; 12(1): 2207678, 2023 Dec.
Article in English | MEDLINE | ID: covidwho-2316508

ABSTRACT

SUMMARY: Intranasal infection of newly-weaned Syrian hamsters by SARS-CoV-2 Omicron variants can lead to brain inflammation and neuron degeneration with detectable low level of viral load and sparse expression of viral nucleoprotein.


Subject(s)
COVID-19 , Encephalitis , Animals , Cricetinae , SARS-CoV-2 , Mesocricetus , Brain
2.
Clin Infect Dis ; 75(4): 742, 2022 Sep 10.
Article in English | MEDLINE | ID: covidwho-2316509
3.
Adv Sci (Weinh) ; 10(10): e2206120, 2023 04.
Article in English | MEDLINE | ID: covidwho-2264801

ABSTRACT

Microplastic (MP) pollution is one of the greatest threats to marine ecosystems. Cold seeps are characterized by methane-rich fluid seepage fueling one of the richest ecosystems on the seafloor, and there are approximately more than 900 cold seeps globally. While the long-term evolution of MPs in cold seeps remains unclear. Here, how MPs have been deposited in the Haima cold seep since the invention of plastics is demonstrated. It is found that the burial rates of MPs in the non-seepage areas significantly increased since the massive global use of plastics in the 1930s, nevertheless, the burial rates and abundance of MPs in the methane seepage areas are much lower than the non-seepage area of the cold seep, suggesting the degradation potential of MPs in cold seeps. More MP-degrading microorganism populations and functional genes are discovered in methane seepage areas to support this discovery. It is further investigated that the upwelling fluid seepage facilitated the fragmentation and degradation behaviors of MPs. Risk assessment indicated that long-term transport and transformation of MPs in the deeper sediments can reduce the potential environmental and ecological risks. The findings illuminated the need to determine fundamental strategies for sustainable marine plastic pollution mitigation in the natural deep-sea environments.


Subject(s)
Ecosystem , Geologic Sediments , Plastics , Microplastics , Methane/metabolism
4.
EBioMedicine ; 89: 104485, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2254674

ABSTRACT

BACKGROUND: Obesity is a worldwide epidemic and is considered a risk factor of severe manifestation of Coronavirus Disease 2019 (COVID-19). The pathogenicity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and host responses to infection, re-infection, and vaccination in individuals with obesity remain incompletely understood. METHODS: Using the diet-induced obese (DIO) mouse model, we studied SARS-CoV-2 Alpha- and Omicron BA.1-induced disease manifestations and host immune responses to infection, re-infection, and COVID-19 mRNA vaccination. FINDINGS: Unlike in lean mice, Omicron BA.1 and Alpha replicated to comparable levels in the lungs of DIO mice and resulted in similar degree of tissue damages. Importantly, both T cell and B cell mediated adaptive immune responses to SARS-CoV-2 infection or COVID-19 mRNA vaccination are impaired in DIO mice, leading to higher propensity of re-infection and lower vaccine efficacy. However, despite the absence of neutralizing antibody, vaccinated DIO mice are protected from lung damage upon Omicron challenge, accompanied with significantly more IFN-α and IFN-ß production in the lung tissue. Lung RNAseq and subsequent experiments indicated that COVID-19 mRNA vaccination in DIO mice boosted antiviral innate immune response, including the expression of IFN-α, when compared to the nonvaccinated controls. INTERPRETATION: Our findings suggested that COVID-19 mRNA vaccination enhances host innate antiviral responses in obesity which protect the DIO mice to a certain degree when adaptive immunity is suboptimal. FUNDING: A full list of funding bodies that contributed to this study can be found in the Acknowledgements section.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Humans , Mice , SARS-CoV-2 , Mice, Obese , Reinfection , Diet , Obesity , Antibodies, Neutralizing , Interferon-alpha , RNA, Messenger , Antiviral Agents , Antibodies, Viral
5.
Atmospheric Chemistry and Physics ; 23(2):1511-1532, 2023.
Article in English | ProQuest Central | ID: covidwho-2217339

ABSTRACT

Gaseous pollutants at the ground level seriously threaten the urban air quality environment and public health. There are few estimates of gaseous pollutants that are spatially and temporally resolved and continuous across China. This study takes advantage of big data and artificial-intelligence technologies to generate seamless daily maps of three major ambient pollutant gases, i.e., NO2, SO2, and CO, across China from 2013 to 2020 at a uniform spatial resolution of 10 km. Cross-validation between our estimates and ground observations illustrated a high data quality on a daily basis for surface NO2, SO2, and CO concentrations, with mean coefficients of determination (root-mean-square errors) of 0.84 (7.99 µg m-3), 0.84 (10.7 µg m-3), and 0.80 (0.29 mg m-3), respectively. We found that the COVID-19 lockdown had sustained impacts on gaseous pollutants, where surface CO recovered to its normal level in China on around the 34th day after the Lunar New Year, while surface SO2 and NO2 rebounded more than 2 times slower due to more CO emissions from residents' increased indoor cooking and atmospheric oxidation capacity. Surface NO2, SO2, and CO reached their peak annual concentrations of 21.3 ± 8.8 µg m-3, 23.1 ± 13.3 µg m-3, and 1.01 ± 0.29 mg m-3 in 2013, then continuously declined over time by 12 %, 55 %, and 17 %, respectively, until 2020. The declining rates were more prominent from 2013 to 2017 due to the sharper reductions in anthropogenic emissions but have slowed down in recent years. Nevertheless, people still suffer from high-frequency risk exposure to surface NO2 in eastern China, while surface SO2 and CO have almost reached the World Health Organization (WHO) recommended short-term air quality guidelines (AQG) level since 2018, benefiting from the implemented stricter "ultra-low” emission standards. This reconstructed dataset of surface gaseous pollutants will benefit future (especially short-term) air pollution and environmental health-related studies.

6.
Nature ; 608(7923): 593-602, 2022 08.
Article in English | MEDLINE | ID: covidwho-1900499

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron sublineages BA.2.12.1, BA.4 and BA.5 exhibit higher transmissibility than the BA.2 lineage1. The receptor binding and immune-evasion capability of these recently emerged variants require immediate investigation. Here, coupled with structural comparisons of the spike proteins, we show that BA.2.12.1, BA.4 and BA.5 (BA.4 and BA.5 are hereafter referred collectively to as BA.4/BA.5) exhibit similar binding affinities to BA.2 for the angiotensin-converting enzyme 2 (ACE2) receptor. Of note, BA.2.12.1 and BA.4/BA.5 display increased evasion of neutralizing antibodies compared with BA.2 against plasma from triple-vaccinated individuals or from individuals who developed a BA.1 infection after vaccination. To delineate the underlying antibody-evasion mechanism, we determined the escape mutation profiles2, epitope distribution3 and Omicron-neutralization efficiency of 1,640 neutralizing antibodies directed against the receptor-binding domain of the viral spike protein, including 614 antibodies isolated from people who had recovered from BA.1 infection. BA.1 infection after vaccination predominantly recalls humoral immune memory directed against ancestral (hereafter referred to as wild-type (WT)) SARS-CoV-2 spike protein. The resulting elicited antibodies could neutralize both WT SARS-CoV-2 and BA.1 and are enriched on epitopes on spike that do not bind ACE2. However, most of these cross-reactive neutralizing antibodies are evaded by spike mutants L452Q, L452R and F486V. BA.1 infection can also induce new clones of BA.1-specific antibodies that potently neutralize BA.1. Nevertheless, these neutralizing antibodies are largely evaded by BA.2 and BA.4/BA.5 owing to D405N and F486V mutations, and react weakly to pre-Omicron variants, exhibiting narrow neutralization breadths. The therapeutic neutralizing antibodies bebtelovimab4 and cilgavimab5 can effectively neutralize BA.2.12.1 and BA.4/BA.5, whereas the S371F, D405N and R408S mutations undermine most broadly sarbecovirus-neutralizing antibodies. Together, our results indicate that Omicron may evolve mutations to evade the humoral immunity elicited by BA.1 infection, suggesting that BA.1-derived vaccine boosters may not achieve broad-spectrum protection against new Omicron variants.


Subject(s)
Antibodies, Viral , Antigenic Drift and Shift , COVID-19 , Epitopes, B-Lymphocyte , Immune Tolerance , Mutation , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antigenic Drift and Shift/genetics , Antigenic Drift and Shift/immunology , COVID-19/immunology , COVID-19/transmission , COVID-19/virology , COVID-19 Vaccines/immunology , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/genetics , Epitopes, B-Lymphocyte/immunology , Humans , Immunity, Humoral , Immunization, Secondary , Neutralization Tests , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
7.
Clin Infect Dis ; 75(1): e974-e990, 2022 Aug 24.
Article in English | MEDLINE | ID: covidwho-1886373

ABSTRACT

BACKGROUND: The role of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the pathogenesis of testicular damage is uncertain. METHODS: We investigated the virological, pathological, and immunological changes in testes of hamsters challenged by wild-type SARS-CoV-2 and its variants with intranasal or direct testicular inoculation using influenza virus A(H1N1)pdm09 as control. RESULTS: Besides self-limiting respiratory tract infection, intranasal SARS-CoV-2 challenge caused acute decrease in sperm count, serum testosterone and inhibin B at 4-7 days after infection; and chronic reduction in testicular size and weight, and serum sex hormone at 42-120 days after infection. Acute histopathological damage with worsening degree of testicular inflammation, hemorrhage, necrosis, degeneration of seminiferous tubules, and disruption of orderly spermatogenesis were seen with increasing virus inoculum. Degeneration and death of Sertoli and Leydig cells were found. Although viral loads and SARS-CoV-2 nucleocapsid protein expression were markedly lower in testicular than in lung tissues, direct intratesticular injection of SARS-CoV-2 demonstrated nucleocapsid expressing interstitial cells and epididymal epithelial cells, While intranasal or intratesticular challenge by A(H1N1)pdm09 control showed no testicular infection or damage. From 7 to 120 days after infection, degeneration and apoptosis of seminiferous tubules, immune complex deposition, and depletion of spermatogenic cell and spermatozoa persisted. Intranasal challenge with Omicron and Delta variants could also induce similar testicular changes. This testicular damage can be prevented by vaccination. CONCLUSIONS: SARS-CoV-2 can cause acute testicular damage with subsequent chronic asymmetric testicular atrophy and associated hormonal changes despite a self-limiting pneumonia in hamsters. Awareness of possible hypogonadism and subfertility is important in managing convalescent coronavirus disease 2019 in men.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Animals , Cricetinae , Humans , Male , SARS-CoV-2 , Semen , Testis
8.
Clin Infect Dis ; 74(11): 1933-1950, 2022 06 10.
Article in English | MEDLINE | ID: covidwho-1704370

ABSTRACT

BACKGROUND: Post-vaccination myopericarditis is reported after immunization with coronavirus disease 2019 (COVID-19) messenger RNA (mRNA) vaccines. The effect of inadvertent intravenous injection of this vaccine on the heart is unknown. METHODS: We compared the clinical manifestations, histopathological changes, tissue mRNA expression, and serum levels of cytokine/chemokine and troponin in Balb/c mice at different time points after intravenous (IV) or intramuscular (IM) vaccine injection with normal saline (NS) control. RESULTS: Although significant weight loss and higher serum cytokine/chemokine levels were found in IM group at 1-2 days post-injection (dpi), only IV group developed histopathological changes of myopericarditis as evidenced by cardiomyocyte degeneration, apoptosis, and necrosis with adjacent inflammatory cell infiltration and calcific deposits on visceral pericardium, although evidence of coronary artery or other cardiac pathologies was absent. Serum troponin level was significantly higher in IV group. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike antigen expression by immunostaining was occasionally found in infiltrating immune cells of the heart or injection site, in cardiomyocytes and intracardiac vascular endothelial cells, but not skeletal myocytes. The histological changes of myopericarditis after the first IV-priming dose persisted for 2 weeks and were markedly aggravated by a second IM- or IV-booster dose. Cardiac tissue mRNA expression of interleukin (IL)-1ß, interferon (IFN)-ß, IL-6, and tumor necrosis factor (TNF)-α increased significantly from 1 dpi to 2 dpi in the IV group but not the IM group, compatible with presence of myopericarditis in the IV group. Ballooning degeneration of hepatocytes was consistently found in the IV group. All other organs appeared normal. CONCLUSIONS: This study provided in vivo evidence that inadvertent intravenous injection of COVID-19 mRNA vaccines may induce myopericarditis. Brief withdrawal of syringe plunger to exclude blood aspiration may be one possible way to reduce such risk.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Chemokines , Cytokines , Endothelial Cells , Humans , Injections, Intravenous , Mice , RNA, Messenger , SARS-CoV-2 , Troponin , Vaccines, Synthetic , mRNA Vaccines
10.
Emerg Microbes Infect ; 11(1): 368-383, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1604258

ABSTRACT

Older individuals are at higher risk of SARS-CoV-2 infection and severe outcomes, but the underlying mechanisms are incompletely understood. In addition, how age modulates SARS-CoV-2 re-infection and vaccine breakthrough infections remain largely unexplored. Here, we investigated age-associated SARS-CoV-2 pathogenesis, immune responses, and the occurrence of re-infection and vaccine breakthrough infection utilizing a wild-type C57BL/6N mouse model. We demonstrated that interferon and adaptive antibody response upon SARS-CoV-2 challenge are significantly impaired in aged mice compared to young mice, which results in more effective virus replications and severe disease manifestations in the respiratory tract. Aged mice also showed increased susceptibility to re-infection due to insufficient immune protection acquired during the primary infection. Importantly, two-dose COVID-19 mRNA vaccination conferred limited adaptive immune response among the aged mice, making them susceptible to SARS-CoV-2 infection. Collectively, our findings call for tailored and optimized treatments and prevention strategies against SARS-CoV-2 among older individuals.


Subject(s)
Age Factors , COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Aging/immunology , Animals , Antibodies, Viral/immunology , COVID-19/pathology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Disease Models, Animal , Disease Susceptibility , Female , Humans , Immunity , Mice , Mice, Inbred C57BL , Respiratory System/immunology , Respiratory System/virology , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Vaccination , Virus Replication
11.
Practical Geriatrics ; 34(7):750-753, 2020.
Article in Chinese | GIM | ID: covidwho-1478172

ABSTRACT

Objective: To investigate the reasons for head face pressure injury caused by protective equipment during the prevention and control of COVID-19.

12.
Clin Infect Dis ; 75(1): e1101-e1111, 2022 Aug 24.
Article in English | MEDLINE | ID: covidwho-1429186

ABSTRACT

BACKGROUND: The effect of low environmental temperature on viral shedding and disease severity of Coronavirus Disease 2019 (COVID-19) is uncertain. METHODS: We investigated the virological, clinical, pathological, and immunological changes in hamsters housed at room (21°C), low (12-15°C), and high (30-33°C) temperature after challenge by 105 plaque-forming units of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). RESULTS: The nasal turbinate, trachea, and lung viral load and live virus titer were significantly higher (~0.5-log10 gene copies/ß-actin, P < .05) in the low-temperature group at 7 days postinfection (dpi). The low-temperature group also demonstrated significantly higher level of tumor necrosis factor-α, interferon-γ (IFN-γ), interleukin-1ß, and C-C motif chemokine ligand 3, and lower level of the antiviral IFN-α in lung tissues at 4 dpi than the other 2 groups. Their lungs were grossly and diffusely hemorrhagic, with more severe and diffuse alveolar and peribronchiolar inflammatory infiltration, bronchial epithelial cell death, and significantly higher mean total lung histology scores. By 7 dpi, the low-temperature group still showed persistent and severe alveolar inflammation and hemorrhage, and little alveolar cell proliferative changes of recovery. The viral loads in the oral swabs of the low-temperature group were significantly higher than those of the other two groups from 10 to 17 dpi by about 0.5-1.0 log10 gene copies/ß-actin. The mean neutralizing antibody titer of the low-temperature group was significantly (P < .05) lower than that of the room temperature group at 7 dpi and 30 dpi. CONCLUSIONS: This study provided in vivo evidence that low environmental temperature exacerbated the degree of virus shedding, disease severity, and tissue proinflammatory cytokines/chemokines expression, and suppressed the neutralizing antibody response of SARS-CoV-2-infected hamsters. Keeping warm in winter may reduce the severity of COVID-19.


Subject(s)
COVID-19 , Actins , Animals , Antibodies, Neutralizing , Cricetinae , Disease Models, Animal , Humans , Lung , Mesocricetus , SARS-CoV-2 , Temperature
13.
Clin Infect Dis ; 73(3): e719-e734, 2021 08 02.
Article in English | MEDLINE | ID: covidwho-1338687

ABSTRACT

BACKGROUND: Mass vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is ongoing amidst widespread transmission during the coronavirus disease-2019 (COVID-19) pandemic. Disease phenotypes of SARS-CoV-2 exposure occurring around the time of vaccine administration have not been described. METHODS: Two-dose (14 days apart) vaccination regimen with formalin-inactivated whole virion SARS-CoV-2 in golden Syrian hamster model was established. To investigate the disease phenotypes of a 1-dose regimen given 3 days prior (D-3), 1 (D1) or 2 (D2) days after, or on the day (D0) of virus challenge, we monitored the serial clinical severity, tissue histopathology, virus burden, and antibody response of the vaccinated hamsters. RESULTS: The 1-dose vaccinated hamsters had significantly lower clinical disease severity score, body weight loss, lung histology score, nucleocapsid protein expression in lung, infectious virus titers in the lung and nasal turbinate, inflammatory changes in intestines, and a higher serum neutralizing antibody or IgG titer against the spike receptor-binding domain or nucleocapsid protein when compared to unvaccinated controls. These improvements were particularly noticeable in D-3, but also in D0, D1, and even D2 vaccinated hamsters to varying degrees. No increased eosinophilic infiltration was found in the nasal turbinate, lung, and intestine after virus challenge. Significantly higher serum titer of fluorescent foci microneutralization inhibition antibody was detected in D1 and D2 vaccinated hamsters at day 4 post-challenge compared to controls despite undetectable neutralizing antibody titer. CONCLUSIONS: Vaccination just before or soon after exposure to SARS-CoV-2 does not worsen disease phenotypes and may even ameliorate infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , Cricetinae , Humans , Mesocricetus , Vaccines, Inactivated
14.
Sci Adv ; 6(28): eabc2992, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-1316917

ABSTRACT

China's policy interventions to reduce the spread of the coronavirus disease 2019 have environmental and economic impacts. Tropospheric nitrogen dioxide indicates economic activities, as nitrogen dioxide is primarily emitted from fossil fuel consumption. Satellite measurements show a 48% drop in tropospheric nitrogen dioxide vertical column densities from the 20 days averaged before the 2020 Lunar New Year to the 20 days averaged after. This decline is 21 ± 5% larger than that from 2015 to 2019. We relate this reduction to two of the government's actions: the announcement of the first report in each province and the date of a province's lockdown. Both actions are associated with nearly the same magnitude of reductions. Our analysis offers insights into the unintended environmental and economic consequences through reduced economic activities.

15.
Clin Infect Dis ; 73(2): e503-e512, 2021 07 15.
Article in English | MEDLINE | ID: covidwho-1315661

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is primarily an acute respiratory tract infection. Distinctively, a substantial proportion of COVID-19 patients develop olfactory dysfunction. Especially in young patients, loss of smell can be the first or only symptom. The roles of inflammatory obstruction of the olfactory clefts, inflammatory cytokines affecting olfactory neuronal function, destruction of olfactory neurons or their supporting cells, and direct invasion of olfactory bulbs in causing olfactory dysfunction are uncertain. METHODS: We investigated the location for the pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from the olfactory epithelium (OE) to the olfactory bulb in golden Syrian hamsters. RESULTS: After intranasal inoculation with SARS-CoV-2, inflammatory cell infiltration and proinflammatory cytokine/chemokine responses were detected in the nasal turbinate tissues. The responses peaked between 2 and 4 days postinfection, with the highest viral load detected at day 2 postinfection. In addition to the pseudo-columnar ciliated respiratory epithelial cells, SARS-CoV-2 viral antigens were also detected in the mature olfactory sensory neurons labeled by olfactory marker protein, in the less mature olfactory neurons labeled by neuron-specific class III ß-tubulin at the more basal position, and in the sustentacular cells, resulting in apoptosis and severe destruction of the OE. During the entire course of infection, SARS-CoV-2 viral antigens were not detected in the olfactory bulb. CONCLUSIONS: In addition to acute inflammation at the OE, infection of mature and immature olfactory neurons and the supporting sustentacular cells by SARS-CoV-2 may contribute to the unique olfactory dysfunction related to COVID-19, which is not reported with SARS-CoV-2.


Subject(s)
COVID-19 , Olfactory Receptor Neurons , Animals , Cricetinae , Humans , Mesocricetus , Olfactory Mucosa , SARS-CoV-2
16.
Clin Infect Dis ; 72(12): e978-e992, 2021 06 15.
Article in English | MEDLINE | ID: covidwho-1269557

ABSTRACT

BACKGROUND: Clinical outcomes of the interaction between the co-circulating pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and seasonal influenza viruses are unknown. METHODS: We established a golden Syrian hamster model coinfected by SARS-CoV-2 and mouse-adapted A(H1N1)pdm09 simultaneously or sequentially. The weight loss, clinical scores, histopathological changes, viral load and titer, and serum neutralizing antibody titer were compared with hamsters challenged by either virus. RESULTS: Coinfected hamsters had more weight loss, more severe lung inflammatory damage, and tissue cytokine/chemokine expression. Lung viral load, infectious virus titers, and virus antigen expression suggested that hamsters were generally more susceptible to SARS-CoV-2 than to A(H1N1)pdm09. Sequential coinfection with A(H1N1)pdm09 one day prior to SARS-CoV-2 exposure resulted in a lower lung SARS-CoV-2 titer and viral load than with SARS-CoV-2 monoinfection, but a higher lung A(H1N1)pdm09 viral load. Coinfection also increased intestinal inflammation with more SARS-CoV-2 nucleoprotein expression in enterocytes. Simultaneous coinfection was associated with delay in resolution of lung damage, lower serum SARS-CoV-2 neutralizing antibody, and longer SARS-CoV-2 shedding in oral swabs compared to that of SARS-CoV-2 monoinfection. CONCLUSIONS: Simultaneous or sequential coinfection by SARS-CoV-2 and A(H1N1)pdm09 caused more severe disease than monoinfection by either virus in hamsters. Prior A(H1N1)pdm09 infection lowered SARS-CoV-2 pulmonary viral loads but enhanced lung damage. Whole-population influenza vaccination for prevention of coinfection, and multiplex molecular diagnostics for both viruses to achieve early initiation of antiviral treatment for improvement of clinical outcome should be considered.


Subject(s)
COVID-19 , Coinfection , Influenza A Virus, H1N1 Subtype , Influenza, Human , Animals , Cricetinae , Disease Models, Animal , Humans , Mesocricetus , Mice , SARS-CoV-2
17.
Clin Infect Dis ; 71(16): 2139-2149, 2020 11 19.
Article in English | MEDLINE | ID: covidwho-1153181

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is believed to be mostly transmitted by medium- to large-sized respiratory droplets, although airborne transmission may be possible in healthcare settings involving aerosol-generating procedures. Exposure to respiratory droplets can theoretically be reduced by surgical mask usage. However, there is a lack of experimental evidence supporting surgical mask usage for prevention of COVID-19. METHODS: We used a well-established golden Syrian hamster SARS-CoV-2 model. We placed SARS-CoV-2-challenged index hamsters and naive hamsters into closed system units each comprising 2 different cages separated by a polyvinyl chloride air porous partition with unidirectional airflow within the isolator. The effect of a surgical mask partition placed between the cages was investigated. Besides clinical scoring, hamster specimens were tested for viral load, histopathology, and viral nucleocapsid antigen expression. RESULTS: Noncontact transmission was found in 66.7% (10/15) of exposed naive hamsters. Surgical mask partition for challenged index or naive hamsters significantly reduced transmission to 25% (6/24, P = .018). Surgical mask partition for challenged index hamsters significantly reduced transmission to only 16.7% (2/12, P = .019) of exposed naive hamsters. Unlike the severe manifestations of challenged hamsters, infected naive hamsters had lower clinical scores, milder histopathological changes, and lower viral nucleocapsid antigen expression in respiratory tract tissues. CONCLUSIONS: SARS-CoV-2 could be transmitted by respiratory droplets or airborne droplet nuclei which could be reduced by surgical mask partition in the hamster model. This is the first in vivo experimental evidence to support the possible benefit of surgical mask in prevention of COVID-19 transmission, especially when masks were worn by infected individuals.


Subject(s)
COVID-19/transmission , Masks , SARS-CoV-2/pathogenicity , Animals , Coronavirus/pathogenicity , Cricetinae , Female , Male , Pandemics , Viral Load
18.
Cell Rep Med ; 1(7): 100121, 2020 10 20.
Article in English | MEDLINE | ID: covidwho-779773

ABSTRACT

Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is transmitted largely by respiratory droplets or airborne aerosols. Despite being frequently found in the immediate environment and feces of patients, evidence supporting the oral acquisition of SARS-CoV-2 is unavailable. Using the Syrian hamster model, we demonstrate that the severity of pneumonia induced by the intranasal inhalation of SARS-CoV-2 increases with virus inoculum. SARS-CoV-2 retains its infectivity in vitro in simulated human-fed-gastric and fasted-intestinal fluid after 2 h. Oral inoculation with the highest intranasal inoculum (105 PFUs) causes mild pneumonia in 67% (4/6) of the animals, with no weight loss. The lung histopathology score and viral load are significantly lower than those infected by the lowest intranasal inoculum (100 PFUs). However, 83% of the oral infections (10/12 hamsters) have a level of detectable viral shedding from oral swabs and feces similar to that of intranasally infected hamsters. Our findings indicate that the oral acquisition of SARS-CoV-2 can establish subclinical respiratory infection with less efficiency.


Subject(s)
Asymptomatic Infections , COVID-19/virology , Disease Models, Animal , SARS-CoV-2/physiology , Virus Shedding , Animals , COVID-19/immunology , COVID-19/pathology , Cricetinae , Cytokines/metabolism , Gastrointestinal Tract/immunology , Gastrointestinal Tract/pathology , Gastrointestinal Tract/virology , Humans , Inflammation , Lung/pathology , Lung/virology , Mesocricetus , Severity of Illness Index , Viral Load
19.
Sens Actuators B Chem ; 327: 128899, 2021 Jan 15.
Article in English | MEDLINE | ID: covidwho-756853

ABSTRACT

The recent pandemic outbreak of COVID-19 caused by a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), poses a threat to public health globally. Thus, developing a rapid, accurate, and easy-to-implement diagnostic system for SARS-CoV-2 is crucial for controlling infection sources and monitoring illness progression. Here, we reported an ultrasensitive electrochemical detection technology using calixarene functionalized graphene oxide for targeting RNA of SARS-CoV-2. Based on a supersandwich-type recognition strategy, the technology was confirmed to practicably detect the RNA of SARS-CoV-2 without nucleic acid amplification and reverse-transcription by using a portable electrochemical smartphone. The biosensor showed high specificity and selectivity during in silico analysis and actual testing. A total of 88 RNA extracts from 25 SARS-CoV-2-confirmed patients and eight recovery patients were detected using the biosensor. The detectable ratios (85.5 % and 46.2 %) were higher than those obtained using RT-qPCR (56.5 % and 7.7 %). The limit of detection (LOD) of the clinical specimen was 200 copies/mL, which is the lowest LOD among the published RNA measurement of SARS-CoV-2 to date. Additionally, only two copies (10 µL) of SARS-CoV-2 were required for per assay. Therefore, we developed an ultrasensitive, accurate, and convenient assay for SARS-CoV-2 detection, providing a potential method for point-of-care testing.

SELECTION OF CITATIONS
SEARCH DETAIL